

Lactate Oxidase

rp216190

Lactate Oxidase

(EC 1.1.3.2, Recombinant from microorganism)

Storage temperature

Stored at -20 °C

Preparation and specification

Appearance	Yellowish amorphous powder, lyophilized
Protein purity	≥90% (from SDS-PAGE)
Activity	≥45.0 U/mg
Catalase	≤0.001%
Creatinine amidohydrolase	≤0.01%
Creatine amidohydrolase	≤0.01%
ATPase	≤0.001%

Properties

Source	Microorganisms	
Classification	EC1.1.3.2(Recombinant from microorganism)	
Molecular weight	42 kDa(SDS-PAGE)	
Isoelectric point	4.6	
Km Value	7.5 × 10 ⁻⁴ M(L-Lactate)	
Optimum pH	6.0-7.0	Fig. 1
Optimum temperature	50°C	Fig. 2
pH stability	pH 6.0-8.5(25 °C, 16 h)	Fig. 3
Thermal stability	Below 50°C(pH 7.5, 30 min)	Fig. 4
Storage stability	Store at -25~ -15 °C for 12 months could maintain more than 90% activity	Fig. 5

Applications

This enzyme is useful for enzymatic determination of lactic acid.

Fig. 1 Optimum pH

Buffer solution: pH 4.5-5.5, Acetate; pH 6.0-8.0, Na-phosphate; pH 8.0-9.0, Tris-HCl; pH 9.0-10.0, Glycine-NaOH.
Enzyme concentration: 1 mg/mL

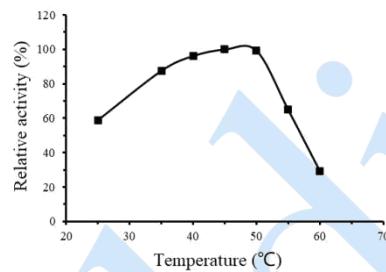


Fig. 2 Optimum temperature

Reaction in 20 mM K-phosphate buffer pH 7.0.
Enzyme concentration: 1 mg/mL

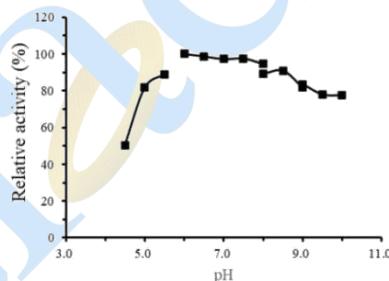


Fig. 3 pH Stability

25°C, 16 h-treatment with 50 mM buffer solution: pH 4.5-5.5, Acetate; pH 6.0-8.0, Na-phosphate; pH 8.0-9.0, Tris-HCl; pH 9.0-10.0, Glycine-NaOH.
Enzyme concentration: 1 mg/mL

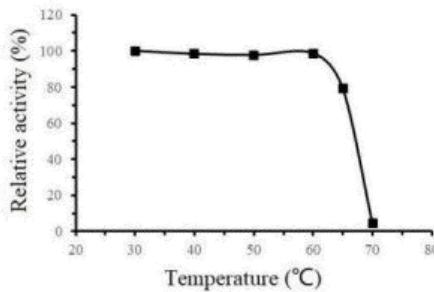


Fig. 4 Thermal stability

30 min-treatment with 50mM K-phosphate
buffer pH 7.0.
Enzyme concentration: 1 mg/mL

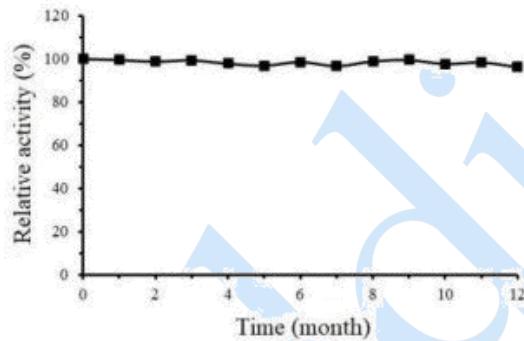
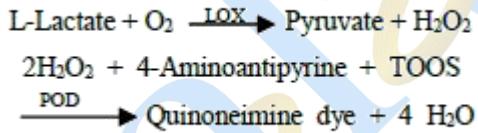



Fig.5 Storage stability (-25 ~ -15 °C)

Assay principle

The amount of Quinoneimine dye produced by the reaction can be detected by spectrophotometer at 555 nm.

Unit definition

One unit (U) is defined as the amount of enzyme which produces 1 μmol of H_2O_2 per min under the conditions described below.

Reagents preparation

Reagent I: 0.2 M pH 6.5 potassium phosphate buffer.

Reagent II: 1kU/mL peroxidase (POD) solution. Reagent III: 50 mM 4-AA solution.

Reagent IV: 0.5 M DL- Lactic acid solution, pH 6.5.

Reagent V: 50 mM TOOS solution.

Enzyme diluent : 10 mM pH 7.0 potassium phosphate solution with 10 μ M FAD. Samples: dilute the enzyme with enzyme diluent to 0.05 – 0.2 U/mL.

Prepare reaction mixture as follows:

Reagent I 10 ml

Reagent II 0.25 mL

Reagent III 1.5 mL

Reagent IV 5 mL

Reagent V 1.5 mL

Add ddH₂O to 50 ml

Procedure

1. Add 1 mL of the reaction mixture to 1 mL cuvette.

2. Heat the reaction mixture at 37 °C for 5 min.

3. Add 20 μ L of the enzyme solution to the cuvette and mix.

4. Record the Δ As at 555 nm in 1 minute in a spectrophotometer thermostated at 37 °C.

* At the same time, measure the blank rate Δ Ab by using the same method as the test except that the enzyme diluent is added instead of the enzyme solution. Δ A = Δ As - Δ Ab

Calculation

Volume activity (U/mL)

$$\begin{aligned} &= \frac{\Delta A \times 1.02 \times df}{39.2 \times 0.02 \times 1 \times 1/2} \\ &= \Delta A \times 2.602 \times df \end{aligned}$$

Weight activity (U/mg)

$$= \text{Volume activity} \times 1/C$$

1.02: Total volume of reaction solution (mL) 0.02: Volume of enzyme solution (mL)

1: Light path length (cm)

1/2: 1mol H₂O₂ will react to 1/2 mol Quinoneimine dye

df: Dilution multiple

C: Enzyme concentration (mg/mL)

39.2: Millimolar extinction coefficient of quinoneimine dye under 555nm (cm²/μmol)

A large, faint watermark of the aladdin logo is positioned diagonally across the page. The logo consists of the word "aladdin" in a blue, lowercase, sans-serif font. The letter "a" is stylized with a yellow oval shape around its top curve. A registered trademark symbol (®) is located at the top right of the watermark.